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Before the arrival of the Galileo spacecraftatJupiter, models for
the interior structure of the four valilean satellites- 10. Europa,
(,”m)nudc.md(,’\“lslo—frangadﬁomunlﬁ)rm mixtures of regh . — ~ To
and ice (thatis, undxffvrenuaud objects) f)r récky cores sur-
rounded b\"nn.mllc of winter ice'.Now it Jppmm that 10 has a
large metallic corc®and that Ganvmede is strongly differentiated,
most probably into a three-layer structure consisting of ametallic
core, asilicate mantle anda deep outer layer of ice]. Direct
information on rhe interior strut-lure of Callisto determined
from previous spacecraftfly-bys' " wasessentially limited to an
estimate of the meandensity being inter mediate between pure ice
anti pure rock. Herewe report measureme nis of Callisto’s gravi -
tational field which reveal that, in contrast to 10 and Ganymede,
this galilean satellite is mostprobably ahomogeneous object
consisting of asolarmixture of 40% compressedicc and 600/0 rock
{including iron and iron sulphide). Callisto’s undifferentiated
state is con. istentwiththeapparent lack of an intrinsic magnetic
field”, and indicates that the cuterinost galilean satellite has not
experienced a heating phase sufficiently high to separate its rock
and metal cormponents from the lighter ices.

Galileo’s first encounter with Call isto took place on 4 November
1996, and  the gravity signai was detected i the radio Doppler data
recorded during the encounter. Tne data anaivsis was accomplished
by fitting a paramettized orbitai model to ihe radio Doppler data by
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veighted nonlinear feast squaray™ . Callisto’s external gravitational
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CF::_:.,._LQ.,_._F. remaining two gravity coefhicients [> and €5, are
not highly correlated with other parameters in the model, but they
aie _5,. iy correlated with cach other, so we nmpose the a priors
hvdrostatic constramt that J, Is exactly 10/3 of C,,. The values that

produce the best fit to the encounter Doppler data are

o= 772 115y 210 " and C., = (143 2 3.2) 10 " The
C:E,_Z stgnal generated by these values 1s shown in Fig. 1. After
the fit, the correlation coefficient between Joand Chs is = 0.9128.
It may appear from Fig. | that the signal-to-notse ratio is not good
enough to infer an unambiguous measnrement of Gy To the
contrary, the data analysis, including an assessment of the co-
variance matrix from the nonlinear least squares process, leads us
to conclude that the errors on the two parameters represent a best
estimate of realistic standard error (essentially a 22% accuracy for
the second-degree external gravitational field).

Because a homogeneons Callisto is unlikely to have high rigidity,

the assumption of hydrostatic equilibriu
. N - - 3

n is plausible. However,
TR, we are not able to place experimental limits on the hydrostatic
assumption. In comparison, the value of Cs, for the Moon (which is
clearly non-hydrostatic) is comparable to what would be expected
for a highly differentiated Callisto, while the Moon’s appropriately
scaled /5 is somewhat larger than what we have measured for a
homogencous Callisto". If Callisto’s measured J» and C,, were
significantly less than what we have found, it could indeed be the
result of rigidity lowering the values from their hydrostatic homo-
geneous values. But we have measured an extreme upper limit to J,
and Cy,. Rigidity could hide some degree of differentiation in
Cailisto if its present distortion is a fossil tidal/rotational bulge
from a time in Callisto’s history when it was rotating more rapidly.
However it is unlikely that Callisto could ever have rotated fast
enough to oftset the effect of signiticant mass concentration toward
its centre. It is also difficult to explain how. once Callisto differ-
entiated, its ice mantle or rock core could become rigid enough to
preserve the excess fossil bulge of a rapidly spinning Callisto over
geological time. For purposes of interior modelling we therefore
assunze that the measured J, and Cas reflect a tidal and rotational
distortion of Callisto into a fluid equilibrium figure with the present
1otaticn rate of the satellite.

The theory of equilibrium figures for synchronously rotating
satellites is well known'™ "%, and we have applied it previously to Io
and Ganymede®. By applying the same theory to Callisto, we find
that the measured value of Csy imiplies an axial moment of inertia C,
normalized to MR, of C/MR? = 0.406, with 1o Jower bound of
2307, The axial moment of inertia provides a direct constraint on
the internal mass distribution™"". For a uniform-density body,
C/MR = 0.4 The smaller the value of /MR, the more concen-
trated is the bodv’s mass towards its centre. The determined value of
IR for Callisto clearly indicates a body of uniform density. Even
the o lower bound implies a nearly homoegencous body, given the
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mean density and radius of Callisto (Fig. 2). An outer ice laver can
beat most ~ 300 kni thick for C/ART = 0.367. But for these models
the mtenior density is between about 1,900 and 2,200 kg m {Fig. 2),
ndicating that the interior would still contain a large fraction of ice,
and Callisto’s rock/metal and ice would be only partially separated.
Vpparentiv, Callisto was never heated enough 1o substantially
sepandte it ce and rock/metal components to form a liquid metallic
coresand generate a magnetic field by dvnamao action, as Ganvimede
b done™ Calinto s only shighty smaller and less massive than
Ganvimede, hence aceretional and radiogepic cnergy Q
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farthest from Jupiter. {
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Figure 1 Bestnl second-degree grawity signal (/,= 47.7 x 10°and
= "4 330 7) Cetected in tre radio Doppler data from Galileo 31 Callisto
~oounier Tne Dopg.er velocity s defined by CAv/v. where Av IS the Doppler
recazncy shifiret erenced 1o the spacecrafi's crystai oscill ator, v 1s the trans -
T led fiequency ~2 3GHzandcisthe speed of ight During encounter, the data
CwCierecorgen by NASA's Deen Space Network tracki ng facility in Spain Doppler
duats arreseectiorrebest-hiqravity model arengicated by hiled crrcles

Tarder o<~ 37 mm st Outside the displayed encounter INterval, the
SIACCU AN TArEr Ry O was iocked 10 a racho signal rom the ground and the
SOPGLIC G O S Gl L 3 ractor of four less Data incluces in the niextend trom 30

ot 1990 B2 30050 .7 hand 3@m n aler close st approa chon 4
Novenne 1936, 2 2: 00 ¢ The gapinthe residuals cenlred around 30min
omencaunierrenacts a g:oon It, e raw Doppler data Because of an unknown
gt g At o0 tne spacecralit's crystal oscrllator, the encounter data were
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FIGURE N7287F1
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FIGURE N7287F2
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